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Abstract
The lower-lying states of a hydrogenic impurity, located at the centre of an
infinite barrier lens-shaped quantum dot (LSQD), are calculated analytically in
parabolic rotational coordinates. The solutions are obtained directly using the
Frobenius method and by transforming the separated differential equations into
the Whittaker equation. Results are given for both symmetric and asymmetric
LSQDs. It is found that the energy states of the system are positive for a very
small LSQD and decrease as the size of the dot increases. They become negative
as the size increases, and approach the energy states of a free hydrogen atom.
Also symmetric and antisymmetric eigenfunctions have been constructed for a
hydrogenic impurity in a symmetric LSQD. Antisymmetric eigenfunctions can
be used as eigenfunctions of a hydrogenic impurity located at the surface of a
semi-LSQD.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many recent research developments have been devoted to nanostructured semiconductor
materials. Quantum wires (QWs) or quantum dots (QDs) show improved properties as
compared to semiconductor quantum wells for high-performance optoelectronic devices [1–3].
The effects of quantum size in the physical properties of these structures have been investigated
both experimentally [4] and theoretically [5]. A driving force has been the attainment of
atomic-like discrete energy levels for the electrons, as opposed to the Bloch energy bands in
crystals. Two directions in research can be identified. One involves the numerical solution of
the multi-band theory of the electron in realistic shapes such as pyramidal QDs [6]. The other
involves obtaining analytic or semi-analytic results for various QD shapes of somewhat higher
symmetry. The latter is often done using an infinite barrier and within a one-band effective-mass
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approach. The goal of the latter approach is to obtain a better physical picture of the role of the
shape on the electronic properties [7]. As a recent example of the use of the latter methodology,
Cantele et al [8] discovered topological surface states in spheroidal QDs. Some of the other
shapes considered so far are spheres [9], cones [10], rectangles [11], discs or cylinders [12],
and domes or flat lenses [13].

Deposition of InxGa1−xAs on GaAs (x = 0.6 [14, 15]) and InAs on GaAs [16] and InAs
on InP [17] produces semi-lens-shaped quantum dots. For example, deposition of InAs on
GaAs in the Stranski–Krastanow growth mode produces lens-shaped quantum dots 20 nm in
diameter, 6 nm high, with a density in the 109 cm−2 range [16]. These quantum dots are used
for laser applications and to improve the characteristics of laser diodes [17]. They can be well
described by the geometry imposed by parabolic rotational coordinates.

Since Bastards pioneering work on the donor impurity in a semiconductor quantum well,
the properties of impurities have always been of great interest to researchers [18]. Many authors
have extended their research to impurities in low-dimensional structures [19, 20]. Chuu et al
[21] studied the hydrogen-like impurities in a QD and QW, considering infinite-confinement
situations, and Szafran et al [22] studied the hydrogen-like impurities in a QD considering
finite-confinement situations. Since it is impossible to obtain an analytical solution for the
Schrödinger equation for an impurity in a low-dimensional system, approximation methods
have to be used; among these, the variational approach is the one extensively used. In recent
publications [23, 24], one of authors of this paper developed a trial wavefunction especially
tailored for QW structures.

The energy eigenfunctions and eigenvalues of an electron confined in a lens-shaped
quantum dot for three particular sizes of symmetric and antisymmetric shapes in the effective
mass approximation have recently been investigated by Lew Yan Voon and Willatzen (VW) [7].
In section 2, the work by VW will be extended and generalized for all sizes of LSQD
by obtaining two simple expressions for the eigenfunctions in terms of the characteristic
parameters. The results will be presented in section 3 with some comments on the parity and
on the eigenfunctions of a semi-LSQD.

In order to study the hydrogen impurity states in LSQDs, first the problem of a free
hydrogen atom in parabolic rotational (PR) coordinates [25] will be reviewed, generalized,
and compared with the method of calculation in spherical coordinates in section 4. It is clear
that such coordinates are quite suitable for studying the energy eigenvalues and eigenfunctions
of a hydrogen-like impurity located at the centre of an LSQD. The results are presented and
discussed in section 5 and the conclusion is given in section 6.

2. Schrödinger equation in parabolic rotational coordinates for a particle confined in an
LSQD

In this section the eigenfunctions and eigenvalues of a particle confined in a closed region of
space with parabolic rotational geometry are calculated. It is considered that the lens-shaped
quantum dot has rotational symmetry around the z-direction. Such a surface can be described
in PR coordinates by ξ , η and ϕ, which are related to the Cartesian coordinates as

x = ξη cos(ϕ),

y = ξη sin(ϕ),
z = 1/2(η2 − ξ 2),

(1)

with 0 � ξ < ∞, 0 � η < ∞, and 0 � ϕ < 2π . The LSQD is limited by the surfaces S1 and
S2, which are identified by

2



J. Phys.: Condens. Matter 19 (2007) 136208 M Barati et al

S1: ξ = ξ0,

S2: η = η0 = αξ0,
(2)

where α is an arbitrary coefficient.
In order to see how the energy states of a electron confined in an LSQD are affected by the

presence of the central attractive hydrogen-type potential, first the energy states of a electron
confined in an LSQD are investigated. In this case the Schrödinger equation and the boundary
conditions are given as (hereafter we use the effective Rydberg unit, therefore the lengths and
energies are expressed in terms of effective Bohr radius a0 = ε2/(m∗e2) and effective Rydberg
E0 = e2/(2εa0) respectively)

−∇2ψ(ξ, η, ϕ) = Eψ(ξ, η, ϕ), (3)

ψ(ξ, η, ϕ)|ξ=ξ0,η=η0 = 0. (4)

In the general case (finite potential barrier), the Hamiltonian is only separable in (ξ, η) and ϕ
coordinates, and ψ(ξ, η, ϕ) = χ(ξ, η)× eimϕ are general solutions of the problem. In the case
of an infinite potential barrier, however, the Hamiltonian is separable in ξ, η, and ϕ coordinates,
and the wavefunction appears as a product of functions of independent variables,

ψ(ξ, η, ϕ) = N f (ξ)g(η) eimϕ, (5)

where m is an integer and N is the normalization constant. The functions f and g are solutions
of two coupled differential equations with a separation constant A [26]:

1

ξ

d

dξ

(
ξ

d f

dξ

)
+

(
−m2

ξ 2
+ k2ξ 2 + A

)
f = 0, (6)

1

η

d

dη

(
η

dg

dη

)
+

(
−m2

η2
+ k2η2 − A

)
g = 0, (7)

where k2 = E . The solution can be written as [7, 27, 28]

f (ξ) = W
(

iA
4k ,

m
2 , ikξ 2

)
ξ

,

g(η) = W
(−iA

4k ,
m
2 , ikη2

)
η

,

(8)

where W (a, c, x) is the regular Whittaker function. The value of k2 and A can be obtained by
imposing the boundary conditions (4) [7, 29]:

W

(
iA

4k
,

m

2
, ikξ 2

0

)
= W

(−iA

4k
,

m

2
, ikη2

0

)
= 0. (9)

This can be simplified as

W
(

ia,
m

2
, ic

)
= W

(
−ia,

m

2
, iα2c

)
= 0, (10)

where a = A
4k and c = kξ 2

0 . Therefore

E = c2

ξ 4
0

,

A = 4ac

ξ 2
0

.

(11)

For any specific value of m(0,±1,±2, . . .) a linear combination of equations (10) will lead
to a function f which depends on a, c and the parameter α, i.e. f (a, c; α) = 0. As one
expects, only for some specific values of a does there exist a solution for f , for some value of c,
corresponding to the energy eigenvalues of the dot.
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Table 1. Lowest (a, c) values for a symmetric LSQD (α = 1.0) and |m| = 0.

a c a c a c a c

0 ±4.810 0.428 ±7.873 0.917 ±10.892 1.460 ±13.870
0 ±11.040 0.363 ±14.154 0.782 ±17.238 1.255 ±20.291
0 ±17.307 0.313 ±26.715 0.713 ±23.540 1.146 ±26.624
0 ±23.583 0.299 ±32.996 0.670 ±29.832 1.024 ±39.229

Table 2. Lowest (a, c) values for a symmetric LSQD (α = 1.0) and |m| = 1.

a c a c a c a c

0 ±14.031 0.689 ±10.773 1.308 ±13.784 1.917 ±16.750
0 ±20.347 0.568 ±17.155 1.120 ±20.225 1.652 ±23.263
0 ±26.647 0.509 ±23.476 1.005 ±26.571 1.506 ±29.642
0 ±32.941 0.472 ±29.780 0.937 ±32.888 1.409 ±35.976

Table 3. Lowest (a, c) values for a symmetric LSQD (α = 1.0) and |m| = 2.

a c a c a c a c

0 ±12.566 0.581 ±9.357 1.138 ±12.362 1.710 ±15.327
0 ±18.850 0.484 ±15.679 0.968 ±18.751 1.474 ±21.793
0 ±25.133 0.436 ±21.974 0.880 ±25.071 1.345 ±28.146
0 ±31.416 0.407 ±28.263 0.823 ±31.373 1.260 ±34.466

Table 4. Lowest (a, c) values for an asymmetric LSQD (α = 1.96) and |m| = 0.

a c a c a c a c

0.238 3.340 5.321 −0.071 7.644 0.468 9.650 0.167
0.940 5.624 7.295 −0.343 9.964 1.133 11.973 0.703
1.764 7.887 9.248 −0.641 12.271 1.889
2.638 10.125 11.18 −0.967

Table 5. Lowest (a, c) values for an asymmetric LSQD (α = 1.96) and |m| = 1.

a c a c a c a c

4.400 0.447 6.361 −0.016 8.756 0.714 10.744 0.309
6.717 1.291 8.300 −0.387 11.090 1.464 13.105 0.971
8.981 2.163 10.226 −0.740 13.396 2.259 15.443 1.681

11.215 3.060 12.139 −1.096 15.679 3.088 17.764 2.436

3. Results and discussion

3.1. LSQD

Two types of structure are studied: symmetric and asymmetric LSQDs. The symmetric LSQD
is obtained for α = 1, with the plane of intersection of the two paraboloids at z = 0. For α �= 1,
the two surfaces have different curvatures, and therefore the intersection plane shifts vertically
away from z = 0. The calculated results for the lowest energies for symmetric (α = 1.0)
and asymmetric (α = 1.96) LSQDs and for |m| = 0, 1, 2 are given in tables 1–3 and 4–6
respectively.
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Table 6. Lowest (a, c) values for an asymmetric LSQD (α = 1.96) and |m| = 2.

a c a c a c a c

5.389 0.645 7.361 0.075 9.287 −0.372 11.799 0.453
7.749 1.596 9.813 0.935 11.199 −0.778 14.192 1.207

10.026 2.519 12.167 1.758 13.100 −1.169
12.266 3.447 14.480 2.596

Table 7. Lowest (a, c) values for a symmetric GaAs LSQD (ξ2
0 = η2

0 = 70 Å).

Our results Reference [7]

a (Å
−1

) c (Å
−1

) a (Å
−1

) c (Å
−1

)

m = 0 0 0.0687 0 0.0687
0 0.1577 0 0.1577
0 0.2472 0 0.2473

m = 0 0.193 0.1125 0.191 0.1122

m = 1 0 0.0898 0 0.0898

The presented method, as discussed before, is applicable for all values of ξ0. The results
are completely consistent with those given by VW [7] for some specific values of ξ0 geometries
(see table 7). In this calculation, the effective mass for GaAs, m∗ = 0.067m0, where m0 is the
rest mass of a free electron, is used.

Figures 2 and 3 show the size dependence of A and E of the ground, the first, the second
and the third energy states. As is seen from equation (11), E and A decrease as 1

ξ 4
0

and 1
ξ 2

0
,

respectively, as ξ0 increases.

3.2. States in a semi-LSQD

LSQDs have some basic spatial symmetries. They all have rotational and mirror symmetry
about the z-axis; only a symmetric LSQD has, in addition, a reflection symmetry with respect
to the z = 0 plane. The symmetry about the z-axis allows two-fold degeneracies. However,
a closer look at equations (5) and (8) shows that, for α = 1, the eigenfunctions, in contrast
to the eigenfunctions of a spherical QD, are asymmetric with respect to the z = 0 plane. The
reflection symmetry guarantees that the states of the symmetric LSQD can be classified as even
or odd functions of z.

In PR coordinates, the z → −z transformation, as seen from equation (1), is equivalent to
ξ → η or A → −A in equation (8). Therefore, the eigenfunctions with odd and even parity
with respect to z = 0 plane are given as


±
A,m,k(ξ, η, φ) = N√

2
( f (ξ)g(η)± f (η)g(ξ)) eimφ

= N√
2

[
W ( iA

4k ,
m
2 , ikξ 2)W (−iA

4k ,
m
2 , ikη2)

ηξ

± W (−iA
4k ,

m
2 , ikξ 2)W ( iA

4k ,
m
2 , ikη2)

ηξ

]
eimφ. (12)

On the other hand, since
−
A,m,k(ξ, η, φ) is odd under z → −z transformation, it is zero at

the z = 0 plane. Therefore it is also the eigenfunction of the Hamiltonian of a semi-LSQD (see
figure 1) with the same eigenvalues.
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Figure 1. The lens-shaped QD (left) and semi-lens-shaped QD (right) in PR coordinates.

Figure 2. The size dependence of the energy E of the ground, first, second, and third excited states
of an electron confined in an LSQD.

4. Hydrogenic impurity confined in an LSQD

4.1. Theory

We assume the effective mass approximation of the Hamiltonian for an impurity located at the
centre of an LSQD and infinite-barrier potential, i.e., Vc = 0 inside and Vc = ∞ outside the
LSQD. The Hamiltonian can be written as

H = −∇2 − 2

|r| . (13)

The PR coordinates allow one to carry out the calculations in quite a general form for LSQDs.
Before calculating the electronic states in an LSQD, it is helpful to solve the Schrödinger
equation for a free hydrogen atom (Vc = 0 everywhere) in PR coordinates.

6
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Figure 3. The size dependence of the energy A of the ground, first, second, and third excited states
of an electron confined in an LSQD.

4.2. Hydrogen atom in PR coordinates

In PR coordinates, the Schrödinger equation is given as

1

(ξ 2 + η2)2

[
1

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
+ 1

η

∂

∂η

(
η
∂ψ

∂η

)]
+ 1

ξ 2η2

∂2ψ

∂ϕ2
+ 2e2

(ξ 2 + η2)
ψ + Eψ = 0. (14)

This equation is separable [26], and therefore the wavefunction can be written as

ψ(ξ, η, ϕ) = f+(ξ) f−(η) eimϕ. (15)

Equation (16) is now separated into two ordinary differential equations:

1

x±
d

dx±

(
x±

d f±
dx±

)
+

(
−m2

x2±
+ k2x2

± + A±
)

f± = 0, (16)

where x+ = ξ , x− = η, k2 = E and A± are arbitrary constants subject to the condition
A+ + A− = 4. It is useful to introduce a constant c′ such that

A± = 2 ± c′. (17)

For calculating the bound states of the system, it is helpful to define a parameter κ such that
κ2 = −k2 = |E |, and hence

1

x±
d

dx±

(
ξ

d f±
dx±

)
+

(
−m2

x2±
− κ2x2

± + A±
)

f± = 0. (18)

The solutions are

f±(x±) = W (κ±, μ, ρ±)
x±

(19)

where

κ± = 2 ± c′

4
√

E
,

ρ± = κx2
± = √

Ex2
±,

μ = m

2
.

(20)
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Table 8. The allowed values of quantum numbers m and n′ for n = 1, 2, and 3 values of principal
quantum number.

n Max. of |m| m Max. of |n′| n′

1 0 0 0 0

2 1 0 1 ±1
±1 0 0

3 2 0 2 0
±2

±1 1 ±1
±2 0 0

The nominator of equations (23) and (24) can be written as [26]

nom( f±) = e− ρ±
2 ρ

μ+ 1
2±

∞∑
n=0

(μ− κ± + 1
2 )n

(2μ+ 1)n

ρn±
n! , (21)

respectively, where (a)n = a(a + 1) · · · (a + n − 1). These relations show that the solutions
are not well behaved at infinity, unless they terminate. This means that for a given m, for some
n = ni we must have

μ− κ± + 1
2 = −n±, (22)

or
|m|
2

− 2 ± c

4
√

E
+ 1

2
= −n±. (23)

Therefore
1√|E | = n+ + n− + |m| + 1,

c′ = 2(n+ − n−)
n+ + n− + |m| + 1

.

(24)

By introducing two new quantum numbers n and n′ such that

n = n+ + n− + |m| + 1,

n′ = n+ − n−,
(25)

it follows from the fact that |m|, n+, n− � 0 that: (1) n � 0, (2) n and n′ are integers and can
be written as

n± = − 1
2 (|m| − n ∓ n′ + 1), (26)

and (3)

|E | = 1

n2
,

c′ = 2n′

n
.

(27)

Hence, for any value of n, there exist some restrictions on the values of n′ and m. The allowed
values of m and n′ for n = 1, 2 and 3 are presented in table 8.

The energy eigenvalues of a hydrogen atom are exactly the same as those obtained by the
standard method in spherical polar (SP) coordinates. This supports the method which will be
applied in the next section for calculating the hydrogenic impurity state in an LSQD.
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As is expected and inferred from table 8, states are degenerate in a way that, for a given
n, there exist −(n − 1) . . . (n − 1) possible values for m, and for each m there are n − |m|
degeneracies. Thus the total number of degeneracies for a given energy is

(n−1)∑
m=−(n−1)

(n − |m|) = n2. (28)

Therefore, the degree of degeneracy of the nth state, as it must be, is the same as in SP
coordinates [25].

The eigenfunctions in PR coordinates, in contrast to the eigenfunctions in SP coordinates,
are asymmetric with respect to the z = 0 plane, except for those with n′ = 0. For n′ > 0,
a larger portion of the charge distribution of the electron lies on the positive side of z, and
vice versa [25]. Equations (20) and (19) show that the ξ ↔ η transformation is equivalent to
c′ → −c′ or equivalently n′ → −n′ transformations. Therefore, one can introduce a linear
combination of eigenfunctions (15), which are simultaneous eigenfunctions of the Hamiltonian
and parity operator πz as follows:


±
n,m,|n′|(ξ, η, φ) = N√

2
( f+(ξ) f−(η)± f+(η) f−(ξ)) eimφ

= N√
2

[
W ( n+n′

2 , m
2 ,

ξ 2

n )W ( n−n′
2 , m

2 ,
η2

n )

ηξ

± W ( n−n′
2 , m

2 ,
ξ 2

n )W ( n+n′
2 , m

2 ,
η2

n )

ηξ

]
eimφ. (29)

These eigenfunctions are now symmetric or antisymmetric with respect to the xy-plane.
The importance of the particular definition of n′ now becomes clear. Since only eigenfunctions
with the same values of n and the same values of m but with different signs of n′ are combined to
produce symmetric and antisymmetric eigenfunctions, n′ can still be used as one of the quantum
numbers of the system. There is also a close relation between these new eigenfunctions and
the eigenfunctions of the hydrogen atom in SP coordinates. Using equation (21), one can
easily show that the new eigenfunctions are exactly proportional to the eigenfunctions in SP
coordinates. For example,


+
2,0,1(ξ, η, φ) ∝ R20(r)Y

0
0 (θ, φ),


−
2,0,1(ξ, η, φ) ∝ R21(r)Y

0
1 (θ, φ).

(30)

where Rnl(r) and Y m
l (θ, φ) are the radial and the angular parts of the eigenfunction of a state

with n, l and m quantum numbers of a free hydrogen atom in SP coordinates.

4.3. Hydrogenic impurity in an LSQD

Now we return to our original problem of a hydrogenic impurity in an LSQD. Consider an
impurity which is located at the centre of an LSQD. The energy eigenvalues and eigenfunctions
(i.e. E and c′), can be determined by the method applied in section 2 and by imposing the
boundary conditions:

W (κ1, μ, κξ
2
0 ) = W (κ2, μ, κα

2ξ 2
0 ) = 0. (31)

It is more convenient to introduce two parameters a and b, where E = 1/(n + a)2 and
c′ = 2(n′ + b)/(n + a), in which n and n′ are the quantum numbers defined in the problem
of the free hydrogen atom in subsection 4.2. One expects that a and b approach zero as ξ0

approaches infinity. Equation (31) can be solved simultaneously to find a and b and therefore
E and c′ as a function of ξ0.

9
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Figure 4. The energy of the ground, first, and second excited states of a hydrogenic impurity in a
symmetric LSQD as a function of ξ0.

5. Results and discussion

5.1. LSQDs

The lower-lying states and binding energies of a hydrogenic impurity located at the centre
(x, y, z = 0) of an LSQD are calculated for different values of ξ0. For clarity we have limited
all our graphs to ξ0 < 6a0.5

0 . Again two types of structure are studied: symmetric (α = 1)
and asymmetric (α �= 1) LSQDs. The variation of the binding energy with respect to ξ0 is
plotted in figure 6. It is obvious that as ξ0 → ∞ all the eigenvalues tend, as they should, to the
corresponding eigenvalues of the free hydrogenic impurity. Therefore, hereafter we are using
the quantum numbers of the free hydrogenic impurity to refer to the corresponding states of the
hydrogenic impurity in the LSQD.

5.1.1. Symmetric LSQDs. Figure 4 shows the splitting, arrangement, and the variation of the
energy eigenvalues of the states n = 1, and n = 2. Since

(1) the potential barrier is invariant with respect to rotation about the z-axis, and
(2) it has mirror symmetry with respect to the xy-plane,

it is expected that eigenstates with the same values of n and the same values of n′ but with
different signs of m, which are degenerate for a free hydrogen impurity, be degenerate for
a hydrogen impurity in an LSQD. Also, the eigenstates with similar values of n and similar
values of m but with different signs of n′ must be degenerate for the hydrogen impurity in an
LSQD. Figure 4 shows these features for states with n = 2. It is obvious that eigenstates with
n = 2, m = ±1, n′ = 0 and n = 2, m = 0, n′ = ±1, which are degenerate for a free hydrogen
impurity, split into two branches in an LSQD with two-fold degeneracy in each branch. It is
also interesting to mention that figure 5 actually shows that, as the size of the dot decreases,
the effect of the confining potential becomes more dominant than the effect of the Coulombic
potential, and therefore the energies become positive and the level spacing increases. This

10
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Figure 5. The parameter c′ of the ground, first, and second excited states of a hydrogenic impurity
in a symmetric LSQD as a function of ξ0.

Figure 6. The binding energy of a hydrogenic impurity as a function of the size of a symmetric
LSQD.

property, which is seen to be shape independent, has been reported in studies of quantum dots
of different shape [30–34].

For n′ = 0, c′ is zero and therefore it is independent of the size of the LSQD (ξ0) (see
figure 5).

We have investigated the shape dependence of the energy spectrum of an LSQD at constant
volume in detail. In order to have some idea about the effect of the geometry on the energy
states of a dot, the volume dependence of the ground-state energy of the hydrogen impurity
in an LSQD is investigated and compared with relevant results for an SQD. The results are
presented in figure 9. As is seen from the figure, the ground-state energy in an SQD is smaller
than that in an LSQD in the whole range of volume, and the energy difference becomes more

11
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Figure 7. The energy of the ground, first, and second excited states of a hydrogenic impurity in an
asymmetric LSQD as a function of ξ0.

significant for small volumes. The results confirm the fact that the energy states of the system
decrease as the level of symmetry of the structure increases. Our results for a semi-LSQD also
support this fact that the first excited state energy of the LSQD coincides with the ground state
energy of the semi-LSQD.

5.1.2. Asymmetric LSQDs. In this case the dot has only rotational symmetry. Therefore it is
expected that only states with the same values of n and the same values of n′ but with different
sign of m be degenerate in the LSQD. This point has been shown in figures 7, 8 for the states
with n = 2. This shows that eigenstates with (n = 2, m = ±1, n′ = 0) and (n = 2, m = 0,
n′ = ±1), which are degenerate for a free hydrogen impurity, now split into three branches in
the LSQD, where only one of them is two-fold degenerate.

On the other hand, for n′ = 0, c′ is no longer independent of the size (ξ0) of the LSQD
(see figure 8).
Parity and semi-LSQDs. It is obvious that, like the cases of a confined electron in an LSQD
and a free hydrogen impurity, when α is unity and n′ �= 1, some of the eigenfunctions (15) of
the Hamiltonian (13) are asymmetric with respect to the xy-plane. Similarly to a free electron
confined in an LSQD, we introduce symmetric and antisymmetric eigenfunctions (with respect
to xy-plane) as follows:


±
n,m,n′(ξ, η, φ) = N√

2
( f (ξ)g(η)± f (η)g(ξ)) eimφ

= N√
2

[
W (κ1,

m
2 , ρ1)W (κ2,

m
2 , ρ2)

ηξ

± W (κ2,
m
2 , ρ1)W (κ1,

m
2 , ρ2)

ηξ

]
eimφ . (32)

The 
−
n,m,|n′| has odd parity, and it must vanish at the xy-plane. Since these functions are

solutions of the impurity Hamiltonian (13) and approach zero at the surface z = 0 for
ξ = η = ξ0, they are also the solutions of the Schrödinger equation for an impurity located at
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Figure 8. The parameter c′ of the ground, first, and second excited states of a hydrogenic impurity
in an asymmetric LSQD as a function of ξ0.

Figure 9. The ground-state energy as a function of volume for SQDs and LSQDs of similar volume.

the centre of the xy-plane in a semi-LSQD (figure 1). Therefore 
−
n,m,|n′| is the ground state of

the semi-LSQD.

6. Conclusions

The energy eigenvalues and eigenfunctions of an electron confined in symmetric, asymmetric
and semi-LSQD structures are calculated in general form. It is shown that the energy
eigenvalues are inversely proportional to V

2
3 and as the size of the dot increases, the energy

eigenvalues approach zero. Since the calculated energy eigenfunctions of the symmetric LSQD
do not show a definite parity πz , a linear combination of these eigenfunctions which are also
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eigenstates of the parity πz are constructed. The constructed odd eigenfunctions are also
the eigenstates of the confined electron in a semi-LSQD, the geometrical structure which is
applicable in the study of some active media in quantum dot lasers.

The energy eigenvalues and eigenfunctions of a hydrogenic impurity confined in
symmetric, asymmetric and semi-LSQDs are also calculated. The results show that the states
and the energy eigenvalues are size dependent and some degree of degeneracies are removed.
As the size of the dot increases, the energy eigenvalues and states tend to the energies of a
hydrogen atom in the bulk material. As the dot size decreases, the effect of the confining
potential becomes more dominant than that of the Coulombic potential and therefore at some
small radii the energy eigenvalues become positive and the level spacing increases. This level
spacing become considerable at very small radii.
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